binomial estimate - определение. Что такое binomial estimate
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое binomial estimate - определение

TAYLOR SERIES
Newton's binomial series; Newton binomial; Newton's binomial; Newton binomial theorem
Найдено результатов: 121
Gaussian binomial coefficient         
FAMILY OF POLYNOMIALS
Q-binomial coefficient; Q-binomial; Gaussian coefficient; Gaussian binomial; Q-binomial theorem; Gaussian polynomial; Gaussian polynomials; Gaussian binomial coefficients; Q-binomial coefficients
In mathematics, the Gaussian binomial coefficients (also called Gaussian coefficients, Gaussian polynomials, or q-binomial coefficients) are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as \binom nk_q or \begin{bmatrix}n\\ k\end{bmatrix}_q, is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over a finite field with q elements.
Binomial         
WIKIMEDIA DISAMBIGUATION PAGE
Binomials; Binomial system; Binomial (disambiguation)
·adj Consisting of two terms; pertaining to binomials; as, a binomial root.
II. Binomial ·noun An expression consisting of two terms connected by the sign plus (+) or minus (-); as, a + b, or 7 - 3.
III. Binomial ·adj Having two names;
- used of the system by which every animal and plant receives two names, the one indicating the genus, the other the species, to which it belongs.
binomial         
WIKIMEDIA DISAMBIGUATION PAGE
Binomials; Binomial system; Binomial (disambiguation)
[b??'n??m??l]
¦ noun
1. Mathematics an algebraic expression of the sum or the difference of two terms.
2. the two-part Latin name of a species of living organism (consisting of the genus followed by the specific epithet).
3. Grammar a noun phrase with two heads joined by a conjunction, in which the order is relatively fixed (as in knife and fork).
¦ adjective consisting of or relating to a binomial.
Origin
C16: from Fr. binome or mod. L. binomium (from bi- 'having two' + Gk nomos 'part, portion') + -al.
Binomial heap         
  • thumb
  • Binomial trees of order 0 to 3: Each tree has a root node with subtrees of all lower ordered binomial trees, which have been highlighted. For example, the order 3 binomial tree is connected to an order 2, 1, and 0 (highlighted as blue, green and red respectively) binomial tree.
  • To merge two binomial trees of the same order, first compare the root key. Since 7>3, the black tree on the left (with root node 7) is attached to the grey tree on the right (with root node 3) as a subtree. The result is a tree of order 3.
  • This shows the merger of two binomial heaps. This is accomplished by merging two binomial trees of the same order one by one. If the resulting merged tree has the same order as one binomial tree in one of the two heaps, then those two are merged again.
PRIORITY QUEUE MADE FROM HEAP-ORDERED TREES WITH POWER-OF-TWO SIZES
Binomial tree; Binomial forest; Binomial queue; Binomial Tree
In computer science, a binomial heap is a data structure that acts as a priority queue but also allows pairs of heaps to be merged.
binomial distribution         
  • Binomial [[probability mass function]] and normal [[probability density function]] approximation for ''n'' = 6 and ''p'' = 0.5
  • Cumulative distribution function for the binomial distribution
  • Galton box]] with 8 layers (''n''&nbsp;=&nbsp;8) ends up in the central bin (''k''&nbsp;=&nbsp;4) is <math>70/256</math>.
PROBABILITY DISTRIBUTION
BinomialDistribution; BinomialDistribution/Revisited; Binomial probability; Bionomial expectation; Binomial pmf; Binomial probability function; Binomial probability distribution; Binomial model; Binomial random variable; Binomial Probability Distribution; Binomial Distribution; Binomially distributed; Binomial frequency distribution; Binomial variable; Binomial data; Poisson approximation
¦ noun Statistics a frequency distribution of the possible number of successful outcomes in a given number of trials in each of which there is the same probability of success.
binomial theorem         
ALGEBRAIC EXPANSION OF POWERS OF A BINOMIAL
Binomial expansion; Binomial Theorem; Newton's binomial theorem; Binomial expansion theorem; Binomial expansions; Binomial formula; Binomial theory; Catalon series; Multi-binomial theorem; Negative binomial theorem; Generation of binomial series using calculus; Newton's generalized binomial theorem
¦ noun a formula for finding any power of a binomial without multiplying at length.
Binomial distribution         
  • Binomial [[probability mass function]] and normal [[probability density function]] approximation for ''n''&nbsp;=&nbsp;6 and ''p''&nbsp;=&nbsp;0.5
  • Cumulative distribution function for the binomial distribution
  • Galton box]] with 8 layers (''n''&nbsp;=&nbsp;8) ends up in the central bin (''k''&nbsp;=&nbsp;4) is <math>70/256</math>.
PROBABILITY DISTRIBUTION
BinomialDistribution; BinomialDistribution/Revisited; Binomial probability; Bionomial expectation; Binomial pmf; Binomial probability function; Binomial probability distribution; Binomial model; Binomial random variable; Binomial Probability Distribution; Binomial Distribution; Binomially distributed; Binomial frequency distribution; Binomial variable; Binomial data; Poisson approximation

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 p {\displaystyle q=1-p} ). A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the popular binomial test of statistical significance.

The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the resulting distribution is a hypergeometric distribution, not a binomial one. However, for N much larger than n, the binomial distribution remains a good approximation, and is widely used.

Binomial theorem         
ALGEBRAIC EXPANSION OF POWERS OF A BINOMIAL
Binomial expansion; Binomial Theorem; Newton's binomial theorem; Binomial expansion theorem; Binomial expansions; Binomial formula; Binomial theory; Catalon series; Multi-binomial theorem; Negative binomial theorem; Generation of binomial series using calculus; Newton's generalized binomial theorem
th entry in the th row of Pascal's triangle (counting starts at ). Each entry is the sum of the two above it.
Binomial voting         
SEMI-PROPORTIONAL ELECTORAL SYSTEM
Binominal System; Binomial System; Binomial voting system
The binomial system () is a voting system that was used in the legislative elections of Chile between 1989 and 2013.
Binomial QMF         
PERFECT-RECONSTRUCTION ORTHOGONAL WAVELET DECOMPOSITION
Binomial-QMF
A binomial QMF – properly an orthonormal binomial quadrature mirror filter – is an orthogonal wavelet developed in 1990.

Википедия

Binomial series

In mathematics, the binomial series is a generalization of the polynomial that comes from a binomial formula expression like ( 1 + x ) n {\displaystyle (1+x)^{n}} for a nonnegative integer n {\displaystyle n} . Specifically, the binomial series is the Taylor series for the function f ( x ) = ( 1 + x ) α {\displaystyle f(x)=(1+x)^{\alpha }} centered at x = 0 {\displaystyle x=0} , where α C {\displaystyle \alpha \in \mathbb {C} } and | x | < 1 {\displaystyle |x|<1} . Explicitly,

where the power series on the right-hand side of (1) is expressed in terms of the (generalized) binomial coefficients

( α k ) := α ( α 1 ) ( α 2 ) ( α k + 1 ) k ! . {\displaystyle {\binom {\alpha }{k}}:={\frac {\alpha (\alpha -1)(\alpha -2)\cdots (\alpha -k+1)}{k!}}.}